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Dear Editor,

Centromeres, the basis for cell division, offer essential insights

into cell dynamics, genome stability, and evolutionary processes

(McKinley and Cheeseman, 2016). Because of ultra-high

complexity, high-quality sequences of centromeric regions

have long been difficult to obtain, hindering studies of

centromere function, evolution, and variation. In recent years,

advances in sequencing technology have solved the problem

of centromere assembly to a large extent, and dozens of

telomere-to-telomere-level reference genomes with complete

centromeric sequences have been assembled (Li et al., 2024;

Liao et al., 2024). However, there have been few studies on

centromere detection in telomere-to-telomere assemblies using

only computational methods, limiting a larger scale and broader

range of centromere analysis.

In this paper, we first evaluate and show the disadvantages of ex-

isting centromere detection methods and then introduce a novel

software, CentIER, which is the first bioinformatic tool designed

to detect complete centromeric regions (including both repetitive

and non-repetitive regions) without additional wet experiments.

Finally, we assess the accuracy of CentIER using diverse plant

genomes, including Arabidopsis (dicot, small genome), maize

(monocot, large genome), and mulberry (metapolycentric chro-

mosomes). The results show that CentIER can perform signifi-

cantly more complete and accurate detection than the exist-

ing tool.

DISADVANTAGES OF EXISTING
CENTROMERE IDENTIFICATION
METHODS

The existing methods for centromere identification can

be divided into two categories. The wet experimental

method involves chromatin immunoprecipitation sequencing

with a centromere-specific protein (CenH3) and identifies

centromeric regions through mapping of reads to the genome

(Chen et al., 2023). Although this method is accurate, the

difficulty of synthesizing CenH3 limits its application. Because

of the low conservation of CenH3 sequences, a common

CenH3 antibody does not work for all species, and the produc-

tion of species-specific antibodies requires comparatively

high expertise. To demonstrate this issue in plant genomes,

we gathered 47 CenH3 protein sequences from 44 plant spe-

cies and performed a phylogenetic analysis (Supplemental

Figure 1). The results showed that the similarity between

evolutionarily distant CenH3 sequences (OsCenH3 from Oryza

sativa and BrCenH3 from Brassica rapa) can be as low as

60.2%, highlighting the potential for considerable sequence

divergence among CenH3 proteins from different species

(Figure 1A).
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The bioinformatic method detects centromeres according to the

locations of abundant tandem repeat sequences (TRs) on chro-

mosomes (Pei et al., 2023). A key assumption of this method

is that TRs occupy the vast majority of centromeric regions.

However, we found that TR locations may not always precisely

correspond to centromeric regions. First, TRs may appear

in pericentromeric regions, leading to a high false positive

rate. For instance, the centromere region on chromosome

(chr) 8 of Zea mays is 49.96–52.22 Mb, whereas the distribution

of TRs with over 300 copies appears at 53.19–53.25 Mb

(Supplemental Table 1). Second, the centromeric region

may contain a substantial portion of non-TRs, leading to a

high false negative rate. To demonstrate this, we used the

method provided by Shi et al. (2023) to identify centromeres

in A. thaliana, rice, and maize genomes. The results

showed that centromere detection using only TRs achieves a

high level of precision but a comparatively low recall rate,

suggesting an incomplete identification of centromeres

(Figure 1C, TRs). For these reasons, quarTeT, the only existing

bioinformatic detection tool, is theoretically able to detect only

TRs in centromeres rather than complete centromeres (Lin

et al., 2023).
NEW FEATURES FOR CENTROMERE
DETECTION

To solve the problem of detecting complete centromeres using

only computation, we observed and found three types of new fea-

tures. First, because centromeres are composed mainly of repet-

itive sequences (Melters et al., 2013), it is reasonable to assume

that the sequence specificity of centromeric regions is lower than

that of other chromosomal regions. We defined sequence

specificity by counting the number of non-repetitive k-mers per

unit chromosome length and then used the A. thaliana andO. sat-

iva (including two varieties, MH63RS3 and ZS97RS3) genomes to

test our hypothesis. The results showed that the k-mer signals

in normal (non-repetitive) regions were over 49 000 and were

higher than those of repetitive regions (Figure 1B). Furthermore,

compared with other repetitive regions that displayed shorter

low-signal intervals (Figure 1B, blue arrow), centromeres were

distinguishable as extra-long recessed regions with continuous

low signals (Figure 1B, red dashed box). This phenomenon can

be observed on most chromosomes of different species (see

Supplemental Figure 2 for details). Therefore, low k-mer signal

intensity can be used for centromere identification.

Second, in addition to TRs, long terminal repeat retrotransposons

(LTRs) are also principal constituents of plant centromeres.
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Figure 1. Evaluation of centromere prediction methods and CentIER algorithm performance with test results.
(A) Sequence alignment of OsCenH3 and BrCenH3.

(B) The distribution of k-mer type number on Arabidopsis chromosome 1.

(C) Evaluation of TR-, k-mer-, and LTR-based detection methods using recall and precision rates.

(legend continued on next page)

2 Plant Communications 5, 101046, December 9 2024 ª 2024 The Author(s).

Plant Communications Correspondence

Please cite this article in press as: Xu et al., CentIER: Accurate centromere identification for plant genomes, Plant Communications (2024), https://doi.org/
10.1016/j.xplc.2024.101046



Correspondence Plant Communications

Please cite this article in press as: Xu et al., CentIER: Accurate centromere identification for plant genomes, Plant Communications (2024), https://doi.org/
10.1016/j.xplc.2024.101046
Therefore, centromeric and non-centromeric regions can be

distinguished on the basis of LTR density to a certain extent.

Although empirical findings indicate that LTR-enriched regions

are inconsistent with centromeric regions identified on the basis

of other features (e.g., TR-enriched and LTR-enriched regions

on maize chr10 are 51.64261–51.660022 and 41.4–48.9 Mb,

respectively; Supplemental Table 1), in some situations, LTRs

can be used as a type of ancillary feature for centromere

detection.

Third, a Hi-C map can also be used to assist with centromere

detection because of the significant difference between

centromeric and non-centromeric regions on the map. Specif-

ically, in many situations, centromeric regions appear as large,

continuous missing areas in Hi-C maps owing to the high dif-

ficulty of read alignment (Supplemental Figure 3). Because

they are widely used in genome assembly, Hi-C data are avail-

able for most recent sequencing projects and can therefore be

used for centromere detection without additional sequencing.

To further study the effects of these features on centromere

detection, we performed a comparative evaluation of the

methods, each using only one type of feature (detailed data are

presented in Supplemental Table 1). The results indicated that

centromere identification using TRs had a higher precision rate,

whereas the approach based on LTRs had a superior recall

rate (Figure 1C). The k-mer-frequency-based method achieved

a notable balance by simultaneously maintaining high rates

of recall and precision. More importantly, the integration of

these complementary methodologies enhanced the accuracy of

centromere identification. For example, the centromeres on

maize chr5 and chr8 were not successfully recognized using

TR information; however, they were identified through the LTR-

based method (Supplemental Table 1).
CentIER OVERVIEW AND ACCURACY
EVALUATION

CentIER is a bioinformatic tool that can comprehensively take

advantage of all the above-mentioned features and information

such as sequence specificity (k-mer frequency), TRs, LTRs,

and Hi-C data (optional) to accurately detect complete centro-

meric regions in high-quality genome assemblies using only

computation.

In brief, CentIER detects candidate intervals using k-mer fre-

quency, TRs, LTRs, and Hi-C data (optional) separately, then

uses a voting-like strategy to decide upon a final contiguous re-

gion in which the most area is contained in as many candidate in-

tervals as possible. An adaptive algorithm has been developed to

detect candidate intervals using k-mer frequency, whereas long

TR- and LTR-enriched regions are obtained using existing tools

and pipelines, assisted by post-detection filtering steps. Candi-
(D) The workflow of CentIER.

(E) Effect of different parameter settings on CentIER accuracy.

(F) Comparison of CentIER predictions with real Arabidopsis centromeric reg

(G) Comparison of the predictive accuracy, recall rate, precision rate, and F1

Z. mays, and G. max.

TRs, tandem repeat sequences; LTRs, long terminal repeat retrotransposons
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date intervals are obtained from Hi-C data by searching for

continuous bins in which the signal intensity is significantly lower

than the whole-genome average, and a post-processing step

has been developed to pinpoint accurate starting and ending po-

sitions. The algorithmic details are provided in the supplemental

notes. In addition to the detection algorithm, CentIER integrates

functions such as querying repeat sequences, annotating

and statistically analyzing LTRs, and visualization, thus providing

a more comprehensive platform for centromere analysis

(Figure 1D).

The performance of CentIER was assessed using the genomes

of multiple plants such as Arabidopsis, rice, maize, soybean

(Glycine max), and mulberry, and the experimental results are

shown in Figure 1F and 1G and Supplemental Tables 2 and 4.

The centromeres of Arabidopsis were accurately detected

by CentIER (Figure 1F). Furthermore, the results of CentIER

were compared with those of quarTeT for the rice, maize,

and soybean genomes using criteria such as predictive

accuracy, recall rate, precision rate, and F1-score (definitions

of these criteria are provided in the supplemental notes).

CentIER accurately identified most centromeres of these

three genomes, showing an average improvement of 24% in

predictive accuracy, 22% in recall, 18% in precision, and 28%

in F1-score relative to quarTeT (Figure 1G). In addition, we

tested CentIER on a mulberry genome with metapolycentric

chromosomes. CentIER accurately detected 35 out of 42

mulberry centromeres (predictive accuracy = 87%) with a recall

rate of 60%, precision rate of 72%, and F1-score of 65%. To

study the effect of key parameters on the performance of

CentIER, we compared the results of Arabidopsis centromere

detection using different settings of ‘‘step_len’’ and ‘‘center_

tolerance,’’ which are two tunable parameters in the sequence-

specificity-based detection module (Supplemental Table 3;

Figure 1E). These two parameters had relatively little effect on

predictive accuracy and a slight effect on recall and precision

rates, demonstrating the stability of the CentIER algorithm.

DATA AND CODE AVAILABILITY
The source codes and example data can be downloaded from https://

github.com/simon19891216/CentIER/releases/tag/CentIERv2.0.
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